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Abstract

This paper fs a tutorial that presents a new method of modeling the probahi-
istic description of failu-e mechanisms in complex, time-dependent systems,
The method of modeling employs a state vector differential equation represen-
tation of cumulative faflure probabilities derived from Markov models associ-
ated with certain qgeneric fault trees, and the method automatically includes
common cause/common mode statistical dependencies, as well as time-related
dependencies not considered in the 1iterature previously. Simulations of
these models employ a population dynamics representation of & probahility
space fnvolving probability particle transitions amona the Markov disioint
states. The particle transitions are governed by a random, Monte Carlo
selection process.

Introduction

The calculation of the probability of failure occurrence in systems that com-
prise mny diverse components qenerally uses rauit Tree Analysis (FTA) as a
final step to fdentify failure mechanisms and logically structure their paths
in a graphical, formalized manner. A necessary second step for quantitative
probability analysis involves assianing occurrence probabilities (or rates) to
each of the basic events in the fault tree that singly, or in combination,
result in top event (or system failure) occurrence, For time-denendent Sys-
tems, the calculation of occurrence probabilities can be performed by a sto-
chaciic process theory model known as the Markov model (Ref. 1), This tuto-
rial pzper describes a formalized new method known as the Failure Mode State
Variable (FMSV) method employing aerneric fault trees and the mathematical
structure of modern state variatle theory to describe how several practica)
systems can be analyzed, Monte Carlo simulation of the Markov models
employing probatility particle transitions are developed. A synthesis of
generic fault trees is employed to approximate top event occurrence rates for
subsystem fault tre2s that are used for a complete system probabilistic fail-
ure probability calculation, Several practical examples drawn from nuclear
safety and safequards systems that {1lustrate the methods are presented,

Me thod

Faflure Moce State Varfahle (FMSY) Formulation: Three qeneric fault trees
each having two fallure modeTs {inputs to the top gate) comprisina two, three,
or four statistically independent (s-independent) initiators together with
common cause and/or common mode s-independent initiators were developed.

These fault trees are shown in Fig. 1, The Markov state transition graphs for
three kinds of two component fault trees are ciown in Fig, 2, and a three
{dentical component merged to a two component system i{s shown in Fiaq. 3. The
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Fig. 2. Generic Markov models for two numbered inftiator
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MERGING OF MARKOV MODEL STATES
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Fig. 3. Three identica) component Markov mod:'s meroed to four
state equivalent two component model describino " jump"”
concitional failure rate time dependency,

disjoint nature of the Markov states allows one to formulate a transformation
mtrix E consistina of only zero's and one's to transform the probability

(Py) of being in & afven Markov state (Sy; 1 =0, 1, oo 20 - 1) qnto

the probability (SH) 0° none, onec, or more combinaticns of initiator occur-
rences described by finite unfons of the Markov states (Ref, 2). This set of
unions of Markov states (S;) is called a set of Adjoint states (5;); 1 =

0, 1, e+, 2N - 1) and comprises successive unions of the Sy in which all
combinations of occurrenres of basic events (not common cause or common mode)
are depicted, By "common cause” is meant a basic event or s-independent union
of basic events that sincly cause the too event to occur. By “common made" i
meant a basic event or s-independent union of basic evenis that sinaly cause a
defeat of redundancy in g svstem. The @B Adjoint state 1s chosen to repre-
sent Spm (m = 2N - 1), the occurrence of all n basic events, The S,

Adjoint state is chosen to represent the union of all of the Sy and is
designated (Q). The 1ntermed1ate'§}; =1, 2, ¢*¢, m - 1 represent all of
the combinations of occurrences of any one, any two, etc.. basic events. The
resulting transforiration mtrix £ fs one-to-one and a 2Nth-order Markov

model comprising n components and of the form:

dP/dt = B(t) = A P(t), t>0; P(O) , (1)

fs transformed to the Adjoint state mode)

gt

by the simiiarity transformation

iDe

t) «A%t), t> o0 Bn) (2)

Nepage! (3)
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Now, because the generic fault tree Markov wodels each have an absorbinc state
represented bv Sy (811 numbered initiators have occurred), the last c¢olumn
of matrix A Jc a cnlumr of zern's: whereas the last row 2% matring 8 ¢ a roy

0¢ 2erc’s, whick establishes Pt =1 1> " Tr waras, thic sstaT ighec
the certainty of beinc in one of the complete set of ¥arrov sStates a< anmy time
ft'. Tt can alsc be shown that Op'¢' alsn represents the probability n¢

occurrence in [0,t] of each and everv failure mode (inputs to a top “aN""
oste) of a afven system (Ref, 2),

Givan that the occurrence of each numhered basic even’ (as wel) as common
cause/common mode events) follows an exponertia) distribution for the "waiting
time" between events, by reorderinc the P; so that the vector ® reprecentc

the occurrence of eact sinale (numhbered) counle® bas<c event, each doutls,
each triple, etc., with $h( ' eliminated from the svstem one obtains the
Failure Mode State Variable (FMSY) inhomcceneous 3ystem:

Fe A F+Bult), t>0; F(0)

of /4t
T(t) = CF+Dult) , (¢)

which is in the general mathematical form for 2 state variable feedback conr-
trol svstem where u(t) represent the system "inputs” (basic event lifetime
cumulative distribution functions - 1cdf's) that are known, F{t) are the sys-
tem state varfables, and T(t) represent the system “outputs” that are the
Ycdf's of the top "OR" qate output or other combinations of failure mode
occurrences representing system failures of one kind eor another., Figure 4
shows the analoa state variable generalized simulation diagram and the
matrices A', 8, and C for the four kinds of two component systems described by
the Markov transition matrices of Figs, 2 and 3 (g = 0 for these models). The
seventh order FMSV model with interns) synergistic faliure mode couplinc for
the three component genmeric fault tree is shown in Figq., 5. The fifteenth
order four component model has the same form but is not shown for the sake of
brevity. These models illustrate the generality of models for systems having
two, three, and four numbered initiators with additional commor cause/comm=n
mode fnitiators, (Note that the number of common cause’/common mode imitiators
does not ircrease the order of the systemg, )

Monte Carlo Simulation: Although the FMSY models can be solved as any deter-

ministic system, and yleld e2xact solutions or numerically accurate solutions
that are the Tcdf’s of the system, only a restricted class of problems can be
solved 1n closed form., It is readily shown that when failure or repair rates
in 8 system change with time (for example, the classic Lathtub hazard rate
curve), the solution of the FMSV systemn beccmes more difficuit. 1f it can be
postulated that these rates are interdependent such that they depend on rela-
tionships that lead to a nonlinear FMSY wodel, deterministic solutions become
much more difficult, The beauty of the Monte Carlo simuletion fnvolving
random process sampling {s that a nonconttant rate or nonlinearity fs no
harder to solve than a linear system, Also, if on¢ begins with the Markov
states and uses population dynamics to represent particle transitions, a
system can be approximated without goina through the step of developing the
Markov or FMSV differential equations.
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Fig. 5. The metrix form of the three component Generic Fault Tree and its
Markov mode! having common cause and common mode dependencies and
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The basis of the use of Monte Carlo techniogues for simulatina the qeneric
fault tree Markov models is found in the concent of time-dependent probabiltity
S(t) a¢ havinc & probahility measure describe~ bv a finite, discrate Aumher of
particles whose tota' rumber js constant to preserve Continuity, byt these
particles may migrate around various possible states o a system (Markov
states'. The impetus for suct a descriptinn lies in the fact that some
failure processes such as nucleation and growtr failure (Re€, 3) can be
expressed onlv in terms of cumulative dearadation leadina to intolerable or
out 07 range system performance. The mechanisms involved may be at an atomic
or molecular level, where many interactions are possible, and some of these
may .retard failure as wel) as accelerate it. Assuming that such processes can
be @scribed stochasticallv (as in radioactive decay), it is possible to
formulate a reliability {or unreliability) mode’ with a one-to-one correspon-
dence between the particles involved in the dearadation or healinc preocess and
the reliability (probahility) particles we invent to describe the probability
of the entire svstem remaining functional, Taoainc each of these particles
with 8 positive integer, they then occupy certain finite volume spaces
described by each Markov state. The probability of one-and-only-one particle
transition between any two disjoint states durino the small random time
interval 2t depbends on the product of the transition rate (A-failure or
u-repair) between the states and the number of particies at time t residing in
the state from which the transition takes place. This concept corresponds to
the classical “birth-death” population dynamics problem of stochastic process
theory except that for Markov models we are conceivinag of absolute proba-
bilities of beinoc in a Markov state instead of the relative transition proba-
bilities associated with Markov process chains,

An example involving the two-component generic fault tree Markov model with
fnternal synerqgistic faflure-repair mechanisms best serves to show the
process. We have the following definitions:

’¢ = common cause failure rate ,

33: 1 = 1,2 = failure rates of components 1 and 2, respectively
w1y = syneraistic failure-repair rate involvinag repair of
component 1 at the expense of failure of component 2 ,
w1 = synergistic fajlure-repair rate involving repair of
component 2 at the expense of failure of component 1
‘_
X_I:L""“?.i,and
*
= +
RERY R

The expressions for Ay and 2 follow from birth and death process
postulates where the Ay, uj; are death and birth rates, respectively,

400-5-8



In the Monte Carlpo simylation, we have the followina complete delineation of
possible sinale-event occurrences in a small time interval rt,

Fyenrn* Trancitinn
E, S g———="51
A.‘
t, Sp—=5,
) )\c
E, S g——=S1
21
E, Sy ——=S,
(x + )
3 S ¢ " M =
5 1 3
"2
Ee S S
(% + )
. ¢ 2
£, 5, ~S,

To compliete the 1list, we have nonevent Fg corresponding to the possibility
that no transition takes place during &t from t.

1f we begin the process with Nt “particles of reliability" in Sy and none

in each of the other states corresponding to the initial condition that both
components are ce~tain tc functior, initially, we can simulate the failure
process by random samplina from a cumulative distribution function (which will
be determined presently) to determine which of the efaht events occur in any
given At, 1f we keep track of how many particles there are at any aiven time
t from 2ero time in each state, and normalize by dividing that number of
particles by N7, we have an estimate of the probability of being 1n each

state as a function of time. To keep track of the passage of time we use the
fact that because the process 1s Markovian (Poisson, to be specific), the
waiting time between event occurrances f{s exponentialiy distributed, Thus, we
can sam 13 from the inverse of the cumulative distributicn function ¢(at) =

1 - e~ 0(t)At where At is the random time interval elapsed until the next
event occurs, afven that on: has Jjust occurred at time t, and of(t) is a
function of time related to the occurrence rate representing the totality of
possible event occurrences in At., A fundamental theorem cof probability says
that the inverse of a cdf fs the uniform distribution, Thus, 1f we had a
method of choosing random numbers &y between 0 and 1, we can rewrite

st = -InZy/olt) ,

where £y 1s distributed uniformly on (0,1). Obviously, in the function
In[1 - ¢(at)], being uniformly distributed, 1t matters not where the center of

4.0-5-9



the distributinn §s, so choosina %y from the excluded interval (0,1) wil
always provije a positive random 2t from the present time t,

We now formulate the event samplina cumulative distribution function. 3ecause
£y throuah 7y represent the totalitv of event occurrences, I, and Jetting
Nalt), Ny(t), Halt), N3lt). represent the distribution of the Nt

particles within and among the four states {5p5,57,57,53', we have the
constraint

Ny = Nolt) + Ny(t) - Np(t) + N3(t) , a1l t >0 , (5,

uhibt corresponds to the Markov probability state vector theory property

]
VPt =1, (€
10

for all t > 0, We can define an event occurrence rate function of time, cft),

representing the totality of possible event occurrences durina any At from ¢,
given that the last occurrence was exactly at time t, This definition is

-« «
olt) = A2N0(t) + \.‘No(t) + xCNO(t) + 51,\41&) + (xc + %.,)u](t)
+ “12”2(” 4 (xc + 1.2)N2(t) . (7

We can formulate a cumulative distribution function (cdf) and choose random
samples £ uniform on (0,1) to determine which event occurs durina the

sample interval at during which one and only one event can occur. This cdf is
formulated as follows:

*
P](t) = kzNo(t)/o(t) . 1f0 < &? < P1(t3. 51 oceurs,

. *
Pz(t) = P1(t; + XTNO(t)/c(t). If P1(t) <%, < Pz(t). E2 occurs,

Pylt) = Polt) + A N () /alt). If P,(t) < L £ Pylt), €5 cccurs,

Palt) = Pylt) + m Ny (B} olt), 1f Pyt < & < Pylt), E4 occurs,

PS(t) = Pd(t) + (kc + xQ)N‘(t)/c(t). I Pd(t) < 52 < Ps(t). Es occurs.,

Pelt) = P (t) + moN (1) alt). 1f Po <, < P (), E, occurs.

Pyle) = Pe(t) + (A + MIN,(2)/0(t), Tf Pc(t) < & < 1.0, £ occurs, (8)

Because the process requires that during the finfte, random time interva) at
one and only one event can occur (or no event occurs), and we have delineated
811 of the possible, mutually exclusive events, our simulation of particle
transitions during every small random time interval 4t will represent a popu-
lation dynamics process. An approximate measure of the expected probability
of being 1n any of the states Sj; 1 = 0,1,2,3 at discrete time points {s
determined from the recursion formula tg = tn.) + Oty M = 1,2 eee,

4,0-5-10
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Applicattfon of FMSY and Monte Carlo simulation models to a simplified
nuclear reactor SCRAM system represented by a three initfator fault tree/

Markov model with a common cause and a common mcde as additional

inftiators,



beainning at tg = 0. If Ny is fust a few particles, say, 100, the simy-
Tation will be poor, but as N+ becomes laraqe (areater than 100 ,00N), the
simulation wil) be a very close aprroximation to the deterministic solutions
to the Markov model differential eauations for the "early time" portion of the
simulation, A&s the probahilitv approsches unity, the population of particles
not residina in the absorbing state approaches zero, and the waiting time
stochastic sampling process from a small "1ive" populacion has more fnherent
error, and the simulation becomes poor even though Nt s large,

Results and Conclusions: The Monte Carlo simulation conde is appiied to a
redﬁlsentative nucClear reactor shutdown system (SCRAY) and compared with a
deterministic solution of the FMSV model of the same problem (Fig. 6), Ffor
failure probability vecters within 0 < Pg(t) < 0.3, the simulation is quite
accurate. Because the "active particTe™ popuTation becomes smaller &s
Ps(t) =1, calculation accuracy is diminished. Bias sampling techniques
should overcome this problem, The important conclusions of the simulation
are:

1. Time-dependent failure rates or nonlinear dependencies are easily

simulated,

2. Failure rate conpling (dearadatior-healina) mechanisms can be
described,

3. A syrergism between fault tree aralysis and Markov mode) analysis 1is
achieved.

Importance to System S.fety: Generic fault trees capable of including common
cavse/common mode dependencies can be used {n 3 synthesis of smaller subsys-
tems to approximately calculate the expected lifetime of the system, Rate
dependent degradations (or healings) not currently represented by fault tree
analysis can be assessed,
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